

TOWN OF BROCK
SPECIAL COMMISSION MEETING
AGENDA PACKET

JANUARY 27, 2026

**NOTICE OF MEETING
THE TOWN COMMISSION OF BROCK, TX**

MAYOR BEN DAVIS
COMMISSIONER CODY NELSON
COMMISSIONER JAMES CARROLL
ATTORNEY WHITT L. WYATT

MEETING DATE AND TIME:
TUESDAY, JANUARY 27, 2026

MEETING LOCATION:
TOWN OF BROCK OFFICE
2491 FM 1189 STE 400
WEATHERFORD, TX 76087

SPECIAL COMMISSION MEETING AGENDA
BEGINS at 6:00 P.M.

Unless specifically noted otherwise, action may be taken on any item listed below.

CALL TO ORDER AND ANNOUNCE QUORUM

2. **INVOCATION AND PLEDGES OF ALLEGIANCE**
3. **REGULAR AGENDA:** Discussion and possible action of the following
 - 3.1** Discuss and take possible action to approve the following application:
(A) Piamonte Coffee- sign permit
 - 3.2** ARPA/Brock Water/Wastewater Plan Study update from Provenance Engineering (PE)
Kent Riker
 - 3.3** Discuss and take possible action regarding the proposed Town of Brock
Water/Wastewater Plan

CITIZEN COMMENTS: The public may address the Commission regarding any item. Persons desiring to address the Commission must register on the sign-in sheet prior to the start of the meeting. Comments are limited to three (3) minutes.

Limited reply by the Commission is allowed under The Texas Open Meetings Act as follows:
(a) If, at a meeting of a governmental body, a member of the public or of the governmental body inquiries about a subject for which notice has not been given as required by this subchapter, the notice provisions of this subchapter do not apply to: (1) A statement of specific factual information given in response; or (2) A recitation of existing policy in response; (b) Any deliberation of or decision about the subject of the inquiry shall be limited to a proposal to place the subject on the agenda for a subsequent meeting.

EXECUTIVE SESSION: The Commission reserves the right to adjourn into executive session at any time during the meeting to discuss any of the matters listed on the agenda, as authorized by Texas Government Code Section 551.071, CONSULTATION WITH ATTORNEY.

- Discuss Water/Wastewater Plan Study

8. ADJOURN

CERTIFICATION

I hereby certify that the above notice of the meeting was posted on or before January 21, 2026, prior to 6:00 P.M. at the Brock Community Center, 2115 FM 1189 Brock, Texas 76087 and at the Brock Town Hall 2491 FM 1189 STE 400, Weatherford, Texas, 76087.

Aubrey Carter
Town Clerk

Accessibility Statement

In compliance with the American Disabilities Act, reasonable accommodations for persons attending meeting will be provided. To better serve you, requests should be received 24 hours prior to the meeting. Please contact the Town Clerk at 817-396-5333 or townclerk@brocktx.net.

**TOWN OF BROCK
SPECIAL COMMISSION MEETING AGENDA BRIEFING
JANUARY 27, 2026**

AGENDA ITEM 3.1

Title

Review and discuss Piamonte Coffee Permit

Item Summary

Discuss and take possible action to approve the following application:

- (A) Piamonte Coffee Sign Permit

Attachments

- 1. Piamonte Coffee Permit Application

Town of
Brock, Texas

Sign Permit Application

NOTICE: One application per sign is required. All blanks must be filled in for application to be complete.

Type of Sign: Temporary Permanent
 Political Commercial Real Estate Construction Special Event

Address and location of Proposed Sign: 2451 FM 1189

Legal Description: _____

Zoning Classification of Property: _____

Applicant: Richard Hill Owner Agent

Applicant's Address: 112 Gilmore Ct.

City, State: Lipan Tx Zip: 76462 Phone No. 806 548 2931

Email Address: richard@pt57@gmail.com

Owner: Richard & Nelly Hill Owner Agent

Owner's Address: 112 Gilmore Ct.

City, State: Lipan Zip: 76087 Phone No. 806 239-0407

Email Address: _____

Style of Sign: Monument Façade Hanging

The following must be submitted along with the completed petition before processing and scheduling:

- 1.) Two Maps. A 1/4" scaled location map clearly showing the placement of the proposed sign in relation to adjacent streets and distance to adjacent streets and other signs on property
- 2.) 1/4" Scaled drawing of proposed sign w/dimensions of the front of the building
- 3.) Description of materials used in construction of sign
- 4.) Filing Fee

Signature of Applicant: Richard Hill Date: 1/8/2026

Signature of Owner: _____ Date: _____

OFFICE USE ONLY

Date completed application received: 1/8/26 Amount Due: 100.00 Check #: 1005

Approval Signature: _____ Date: _____

PHONE: (817) 396 - 5333
MAILING ADDRESS: 2451 FM 1189, Ste.B, Brock, TX 76087
EMAIL: townclerk@brocktx.net

M. Mathen

PIAMONTE®
Coffee

**FARM
TO CUP
EXPERIENCE!**

www.piamentecoffee.com

SACCHETTO 250 g

1. Acquista il sacchetto di 250 g di caffè.

2. Scrivimi.

Scrivimi il tuo nome e la tua città e riceverai un sacchetto di 250 g di caffè.

Attenzione:

1. Acquista il sacchetto di 250 g di caffè.
2. Scrivimi il tuo nome e la tua città e riceverai un sacchetto di 250 g di caffè.
3. Scrivimi il tuo nome e la tua città e riceverai un sacchetto di 250 g di caffè.

**TOWN OF BROCK
SPECIAL COMMISSION MEETING AGENDA BRIEFING
JANUARY 27, 2026**

AGENDA ITEM 3.2

Title

ARPA/Brock Water/ Wastewater Plan Study

Item Summary

Water/Wastewater Plan study update from Provenance Engineering (PE) Kent Riker

Attachments

1. Water PSR-December 2025
2. Wastewater PSR- December 2025
3. Executive Summary from Provenance Engineering

PROVENANCE ENGINEERING

Rooted to Be *Uniquely Different*

January 22, 2026

Mr. Ben Davis
Town of Brock
2481 FM 1189
Brock, Texas 76087

Subject: Brock Water Master Plan – Project Status Report December 2025

Dear Mr. Ben Davis:

Provenance Engineering is pleased to provide this Project Status Report (PSR) for the Water Master Plan. The following table shows the work completed to date.

Task	Prior % Complete	Current % Complete	Status
1 Project Management	99%	99%	In Progress
2 Data Gathering & Review	100%	100%	Completed
3 Demand Projections	100%	100%	Completed
4 Water Supply Planning	100%	100%	Completed
5 Capital Improvements Plan	100%	100%	Completed
6 Rate Study Analysis	95%	95%	In Progress
7 Regulatory & Stakeholder Coordination	100%	100%	Completed
Total Project	99%	99%	In Progress

We have completed the water supply options analysis task; we completed the water distribution system model. We did not make additional progress in December. Should you have any questions, please do not hesitate to call me to discuss further.

Sincerely,

Kent Riker, PE
President | Servant Leader

PROVENANCE
ENGINEERING

Rooted to Be Uniquely Different

January 22, 2025

Mr. Ben Davis
Town of Brock
2481 FM 1189
Brock, Texas 76087

Subject: Brock Wastewater Master Plan – Project Status Report December 2025

Dear Mr. Ben Davis:

Provenance Engineering is pleased to provide this Project Status Report (PSR) for the Wastewater Master Plan. The following table shows the work completed to date.

Task	Prior % Complete	Current % Complete	Status
1 Project Management	99%	99%	In Progress
2 Data Gathering & Review	100%	100%	Completed
3 Wastewater Flow Projections	100%	100%	Completed
4 Wastewater Infrastructure Analysis	100%	100%	Completed
5 Wastewater Treatment & Disposal Analysis	100%	100%	Completed
6 Capital Improvements Plan	100%	100%	Completed
7 Rate Study Analysis	96%	96%	In Progress
8 Regulatory & Stakeholder Coordination	96%	96%	In Progress
Total Project	99%	99%	In Progress

The main wastewater infrastructure needed for over 20,000 acres of the Brock community has been laid out in GIS and broken down into different phases into a capital improvements plan. We were idol on the Wastewater Master Plan this month. Should you have any questions, please do not hesitate to call me.

Sincerely,

Kent Riker, PE
President | Servant Leader

EXECUTIVE SUMMARY

Introduction

The Town of Brock Wastewater Master Plan (WWMP) establishes a 50-year roadmap for moving the community from total reliance on onsite sewage facilities (septic tanks) to a fully centralized, 1.9 MGD municipal wastewater system. The study evaluates existing conditions, projects long-term flows, and recommends phased collection, treatment, and funding strategies that are technically defensible and financially achievable.

Growth Context and Land Use

Brock was incorporated in 2016 but sits in the growth corridor between Interstate 20 and the Brazos River west of Fort Worth. Most of its 6,620-acre jurisdiction (city limits + extraterritorial jurisdiction (ETJ)) is still rural, yet residential building permits and school enrollment indicate sustained suburbanization.

- Current Development Pattern. All homes and businesses discharge wastewater to individual sewage systems; two Brock ISD package plants (7,500 gpd and 10,000 gpd) handle only on-campus flow and cannot accept external connections.
- Study Area. The WWMP ultimately serves ~17,250 acres, enabling infill, higher-density subdivision and commercial frontage redevelopment.
- Population & Land-Use Forecast. Residential acreage is projected to overtake agricultural land by 2034, while commercial acreage expands along FM 1189 and I-20 frontage (Table 2-1 – Land Use by Acreage and Infrastructure).

Wastewater Flow Projections

Parcel-level land-use modeling and benchmark unit-flow rates produce the following system-wide design values displayed in Table ES-1 below (all flows are average daily unless noted):

Table ES-1: Wastewater Flow Projections

Design Horizon	Service Population	AADF (MGD)	Peaking Factor	Peak Design Flow (MGD)	Connections	Flow/Connection (gpd)
Start-Up (2028)	~1,500	0.05	x 4 x 1.25	0.25	150	335
20 yr (2045)	~15,000	0.75	x 4 x 1.25	3.75	2,200	335
Build-out (2075)	~32,000	1.9	x 4 x 1.25	9.5	5,626	335

*(Source: Section 3; see Figure 3-5 – Projected AADF Curve, 2025-2075). Average flow density at build-out is ~110 gpd/acre, confirming the rural development patterns in the Town. Peaking factor assumes a max flow multiplier of 4 with a 25% safety factor.

Phased Infrastructure Strategy

Five implementation phases balance return-on-investment, hydraulic scalability, and funding capacity (Table ES-2 – Phase-by-Phase Summary):

Table ES-2: Phase-by-Phase Summary

Phase	Calendar Window	Principal Assets	Cumulative Capacity (AADF)
1	2028-2030	50,000 gpd packaged plant, Brock Spur lift station, 8-in trunk sewer	50,000 gpd
2	2030-2035	250,000 gpd packaged plant at Patrick Creek, 16-in Young Bend trunk sewer, force main upgrades	300,000 gpd
3	2045-2055	0.8 MGD central WWTP, 24-in Patrick Creek trunk sewer	0.8 MGD
4	2050-2060	WWTP expansion to 2.4 MGD, 16-in Lazy Bend trunk sewer, Tidwell lift station	2.4 MGD
5	2055-2060	Twin 12-in Patrick Creek extensions & neighborhood collectors	2.4 MGD (no new treatment)

* Years not shown do not reflect lack of operation, rather lack of proposed infrastructure development in that period. For example, between 2035 and 2045, the system is expected to be creating revenue to be invested in 2045.

By TCEQ regulations, wastewater treatment facilities must begin planning expansions once they reach 75% of their permitted capacity. This requirement guided the final system sizing of 2.4 MGD, ensuring that each planned expansion achieves its full useful life before approaching the 75% threshold. Phase progression is triggered either by flow (reaching 75% of the prior phase's capacity) or by service-area development milestones. To reduce long-term costs, all trunk sewers are sized for ultimate build-out, avoiding the need for future upsizing.

Treatment Approach

A stepped treatment plan provides early capacity while preserving long-term efficiency:

- Brock Spur Packaged Plant – 50,000 gpd. Uses the transferred private permit to fast-track service; decommissioned after ~20 years.
- Patrick Creek Packaged Plant – 250,000 gpd. Adds redundancy and intercepts flows from upstream development until the central plant is financed.
- Central WWTP – 0.8 MGD expandable to 2.4 MGD. Three parallel 0.8-MGD trains with space for advanced nutrient removal and reclaimed water options; sited near Patrick Creek for gravity discharge.

Capital Improvement Plan (CIP)

Order-of-magnitude 2025-dollar costs—including engineering, contingencies, and development allowances—sum to \approx \$243 million over five phases (Table ES-3 – CIP Cost Summary). Each phase focuses on critical infrastructure needed to meet its primary objectives, while selected developmental projects are also included to support broader service-area expansion. For a more in depth cost analysis, see Section 6: Capital Improvements Plan.

Table ES-3: CIP Cost Summary

Phase	Critical (\$M)	Development (\$M)	Total (\$M)
1	\$4.5	\$1.5	\$6.0
2	\$16.0	\$1.0	\$17.0
3	\$80.0	\$5.0	\$85.0
4	\$118.0	—	\$118.0
5	\$18.0	—	\$18.0
Total	\$236.5	\$7.0	\$243.5

Early phases focus on revenue-positive corridors to seed cash flow; later phases leverage debt once user-fee coverage improves.

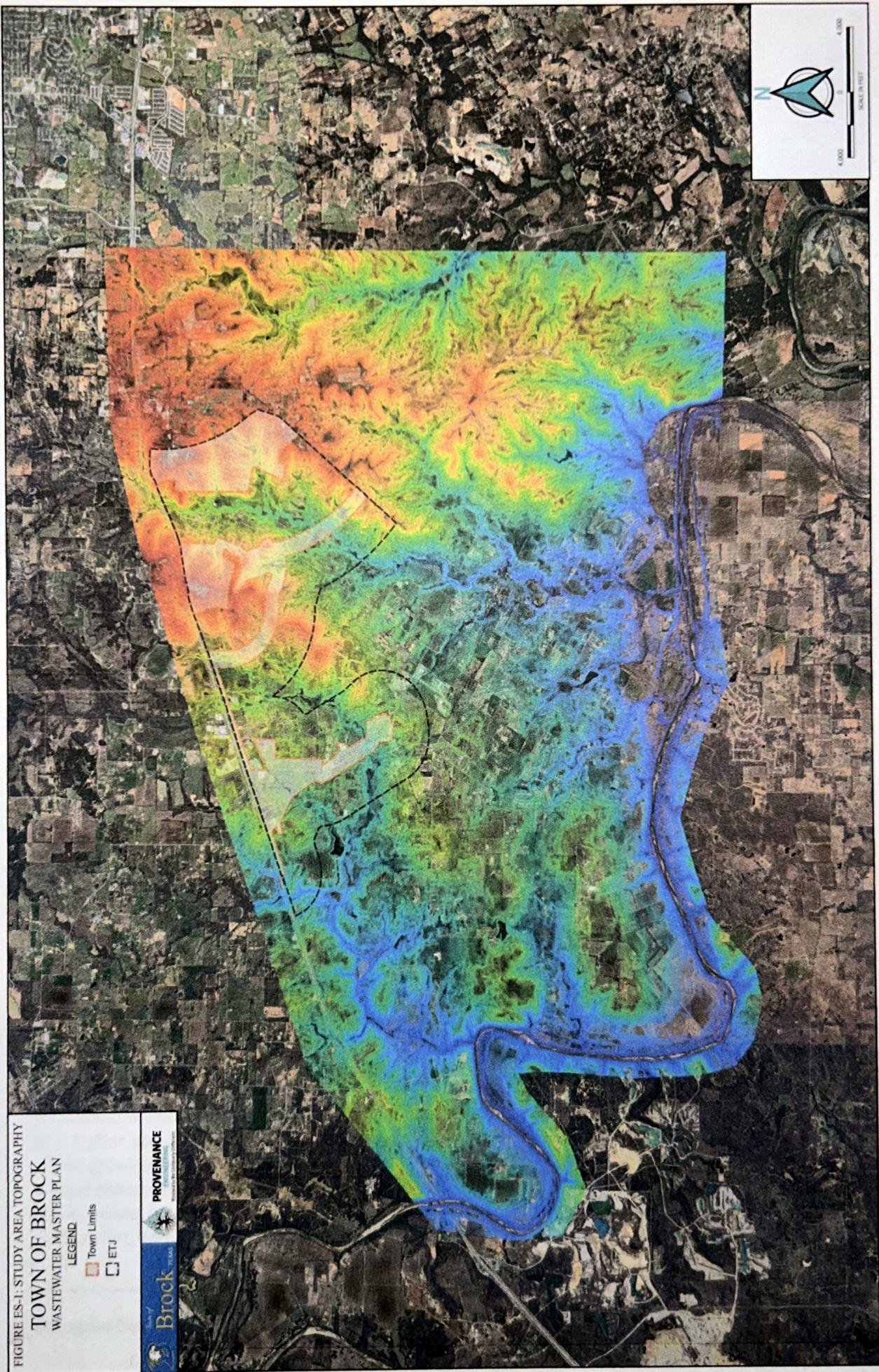
Funding and Rate Strategy

Section 7 couples the CIP with a rate model that:

- Maintains minimum 1.25 \times debt-service coverage while phasing in system-development charges.
- Closes an early-phase funding gap through a mix of Texas Water Development Board (TWDB) loans, USDA Rural Utilities grants, and local impact fees.
- Keeps projected residential rates below central medians through 2075.

A formal bond-program schedule should be prepared during preliminary design.

Regulatory and Stakeholder Coordination


The Town should secure a Certificate of Convenience and Necessity (CCN), transfer the existing TPDES discharge permit, and obtain new TPDES permits for Patrick Creek and the central WWTP. Outreach meetings with TCEQ, TWDB, Parker County, and adjacent municipalities should begin immediately to explore regional partnerships and effluent-reuse markets.

Key Benefits

- **Environmental:** Eliminates thousands of onsite sewage systems, reducing nutrient loading to Patrick and Grindstone Creeks.

- **Growth Enablement:** Centralized sewer supports smaller residential lots and higher-value commercial development, broadening the tax base.
- **Scalability and Resilience:** Modular treatment trains and build-out-sized conveyance ensure capacity stays one planning window ahead of demand.
- **Financial Viability:** Front-loaded service to high-density corridors generates early revenue, cushioning later capital outlays.

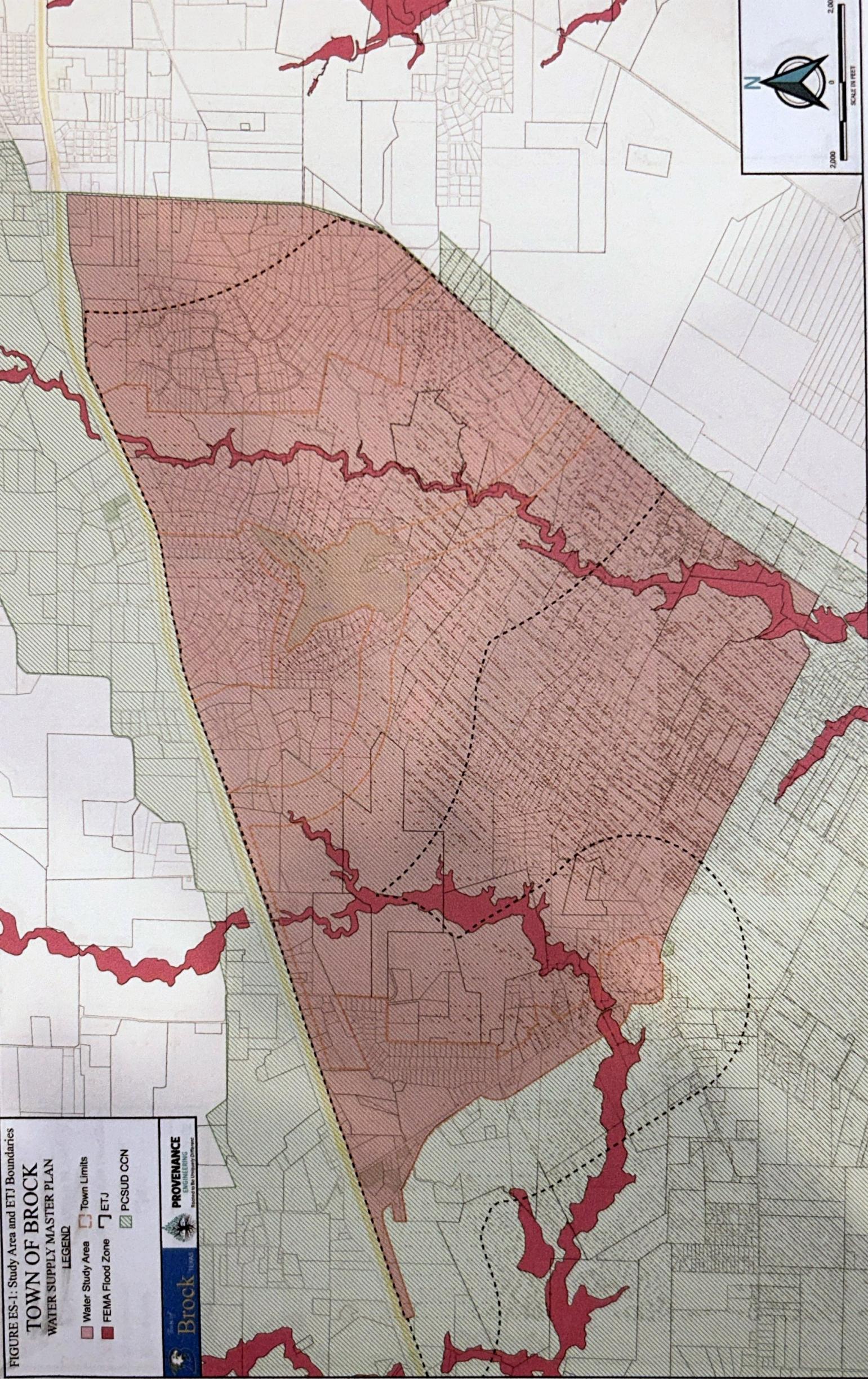
The topographic map in Figure ES-1 served as the foundational reference for all collection-system planning in the WWMP. Drainage divides, ridgelines, and natural flow paths identified on the map established the preliminary sewer-shed boundaries, guided trunk-sewer routing, and dictated where lift stations would be required to overcome elevation breaks. These same topographic controls also structured the phasing strategy, since gravity-favored basins could be economically served early while higher-elevation or hydraulically isolated areas were deferred to later phases. In this way, the topographic map provided both the spatial logic and sequencing framework for the full 50-year build-out plan.

EXECUTIVE SUMMARY

Introduction

The Town of Brock Water Supply Master Plan (WSMP) establishes a 50-year roadmap for transitioning from reliance on private wells and limited potable water providers to a fully centralized, municipally directed water system. The study evaluates existing conditions, projects long-term demands, and recommends phased conveyance, storage, and financing strategies that are technically defensible and financially achievable.

Growth Context and Land Use


Brock, incorporated in 2016, lies within the high-growth corridor between Interstate 20 and the Brazos River west of Fort Worth. While much of the 6,620-acre jurisdiction remains rural, residential permits and school enrollment indicate sustained suburbanization.

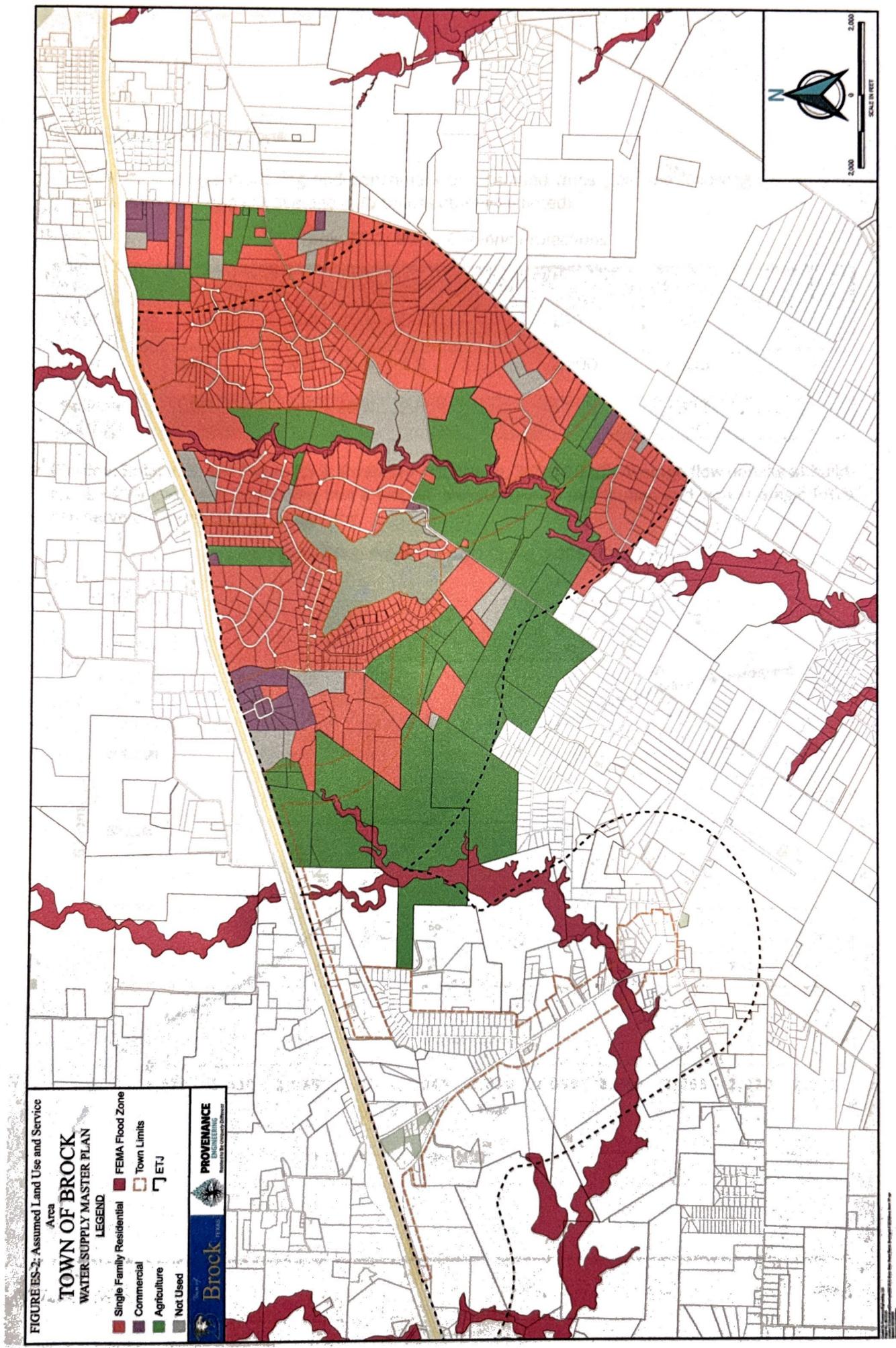

- **Current Development Pattern.** Most households and businesses rely on private wells; Parker County SUD's CCN covers the area but treatment, conveyance, and storage capacity are insufficient to support the Town's projected growth.
- **Study Area.** The WSMP ultimately serves ~4,781 acres, encompassing both infill and expansion corridors along FM 1189 and the I-20 frontage (See **Figure ES-2: Assumed Land Use and Service Area.**)
- **Population and Land-Use Forecast.** Residential acreage is expected to dominate by the 2030s while commercial acreage expands along highway and arterial corridors. (See **Table ES-1: Population and Acreage Forecast.**)

Table ES-1: Population and Acreage Forecast

Year	Population	Residential Acreage	Commercial Acreage	Agricultural Acreage
2025	967	2,708	181	2,536
2035	1,610	2,979	228	2,218
2045	2,373	3,277	287	1,861
2055	3,272	3,604	362	1,459
2065	4,326	3,965	456	1,004
2075	5,559	4,758	575	92

Density assumption and method. The updated population forecast assumes a steady intensification of residential land use within the Town and ETJ, reflecting continued subdivision of large tracts, incremental infill along FM 1189 corridors, and gradual adoption of smaller rural-estate lot patterns. Starting from the observed 2025 baseline density implied by existing residential acreage and population, persons per residential acre are escalated by 10 percent per decade while holding the residential acreage path from the land use plan constant. This approach preserves the rural character in the near term but recognizes that, as parcels subdivide and utilities extend, the average acres per household will decline, increasing occupants per residential acre over the planning horizon. The result is a higher population trajectory than the ISD-based baseline for the same land inventory, with the effect growing over time as densification compounds. If annexation, zoning amendments, or utility capital phases accelerate small-lot approvals relative to this assumption, realized densities will exceed these values; conversely, if on-site wastewater, floodplain constraints, or access spacing policies limit subdivision, densities will underperform the assumed trend.

Water Demand Projections

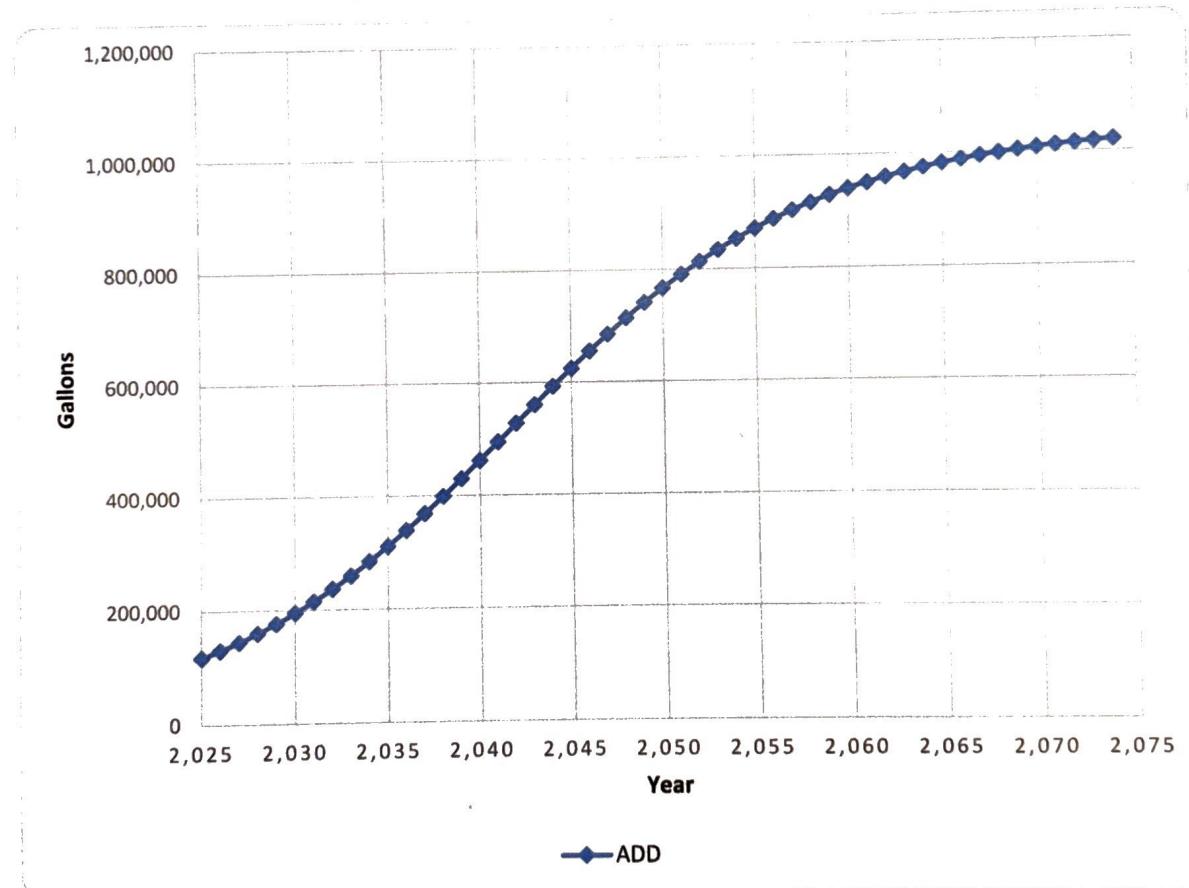

Parcel-level land-use modelling and benchmark unit-demand rates yield the following system-wide design values (all flows are average daily unless otherwise noted):

Table ES-2: Water Demand Projections

Design Horizon	ADD (MGD)	Peaking Factor	Design Day Demand (MGD)	Connections	Flow/Connections (gpd)
Start Up (2028)	0.05	2.0 + 25 %	0.13	150	~335
20 yr (2045)	0.75	2.0 + 25 %	1.9	2,200	~335
Buildout (2075)	1.05	2.0 + 25 %	2.6	5,626	~335

(Source: Section 3; see **Figure ES-3: Projected ADD Curve, 2025-2075**). Average flow density at buildout is ~219 gpd/acre, confirming that a looped, pressure-zoned distribution grid with strategic PRVs can serve the gently rolling topography.

Figure ES-3: Projected ADD Curve, 2025-2075

Phased Infrastructure Strategy

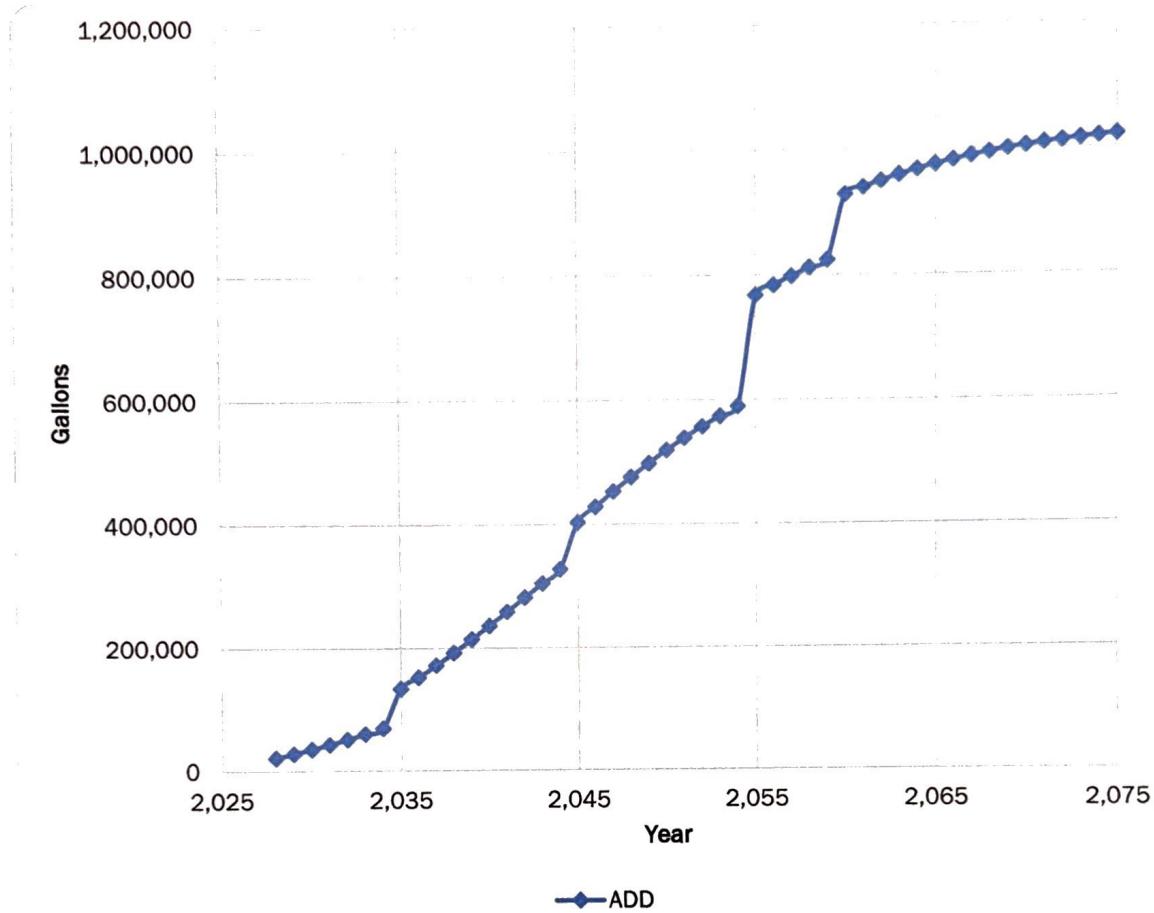

Five implementation phases balance return-on-investment, hydraulic scalability, and funding capacity (see **Table ES-3: Phase-by-Phase Summary** and **Figure ES-4: System ADD**).

Table ES-3: Phase-by-Phase Summary

Phase	Calendar Window	Principal Assets	Cumulative Capacity
1	2028-2030	16-in trunk main (Old Brock Rd), 200,000-gallon GST, duplex VFD booster, 10,000-gallon hydropneumatic tank.	0.21 MGD
2	2030-2035	Extend trunk to I-20, 10-in loop via Grindstone Creek, ridge-crest hydropneumatic tank, PRVs.	0.5 MGD
3	2045-2055	Second 200,000-gallon GST, low-zone reinforcement mains.	1.25 MGD
4	2050-2060	Long-term conversion of Canyon West / Canyon Creek, full grid looping.	2.00 MGD
5	2055-2065	Comprehensive 16-in transmission ring, interties with PRVs	2.60 MGD

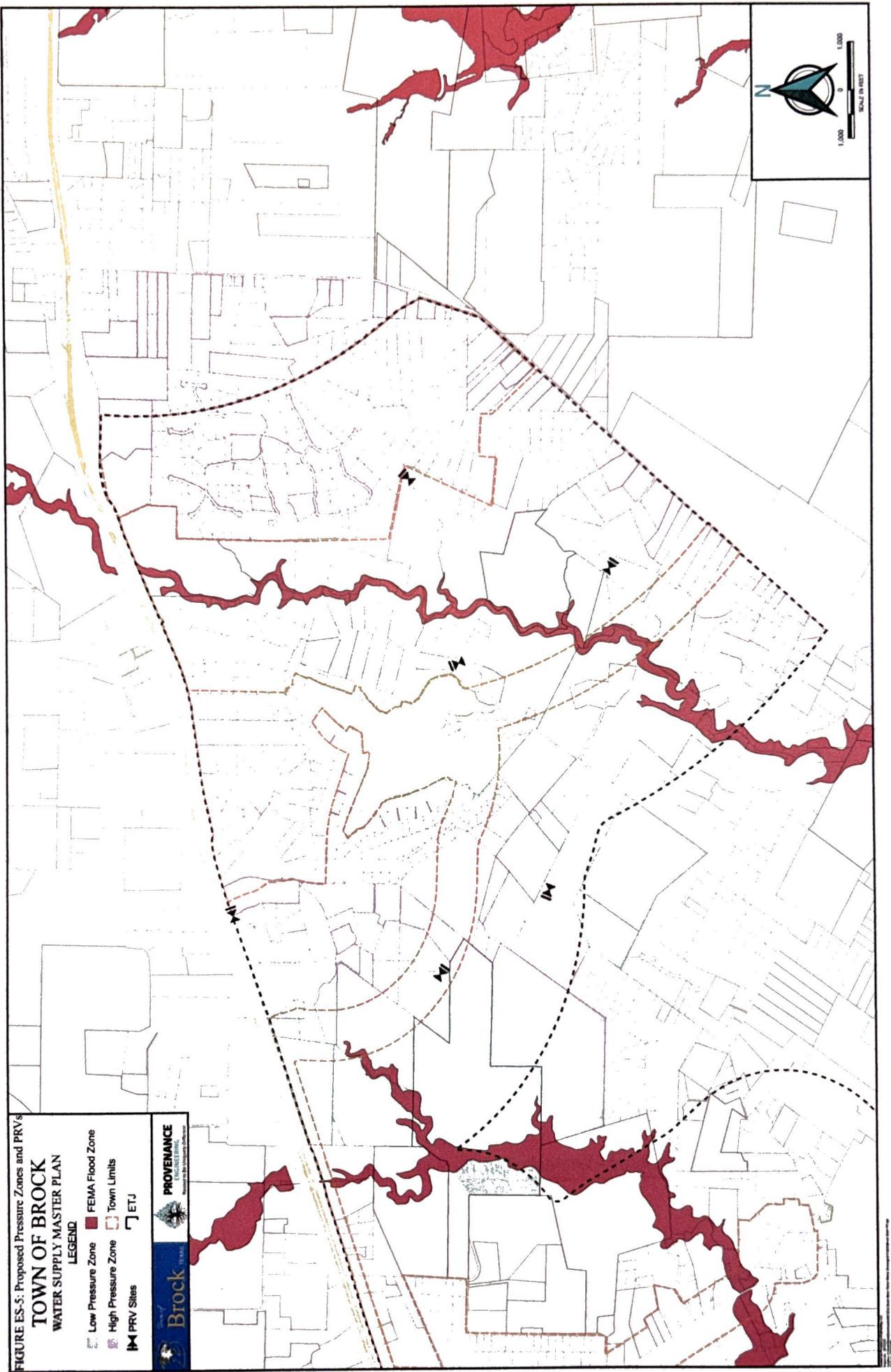

Phases advance when maturity triggers are met (e.g. 75 % of prior-phase capacity or service-area uptake). All trunk conveyance is sized for build-out to avoid costly upsizing.

Figure ES-4: System ADD Curve, 2025-2075

Storage and Pressure Zoning

Topography supports a High Zone along the ridge and two Low Zones in the valleys, tied by PRVs and an emergency intertie. Modeling confirms compliance with 30 TAC § 290.46(r), which requires that under normal operating conditions a public water system maintain a minimum pressure of 35 psi in the distribution system, and under fire flow or other elevated demand conditions that pressure not fall below 20 psi. Fire protection is sized at 1,000 gpm for two hours—this demand is considered in pressure simulations to verify that no node drops below 20 psi during the fire event.

Capital Improvements Plan (CIP)

Opinion-of-probable-costs in 2025 dollars — including engineering, contingencies, and expansion allowances — sum to roughly \$41.8 million over five phases (Table ES-4: CIP Cost Summary).

Table ES-4: CIP Cost Summary

Phase	Estimated Cost (\$M)
1	4.34
2	7.75
3	9.78
4	9.07
5	10.89
Total	41.83

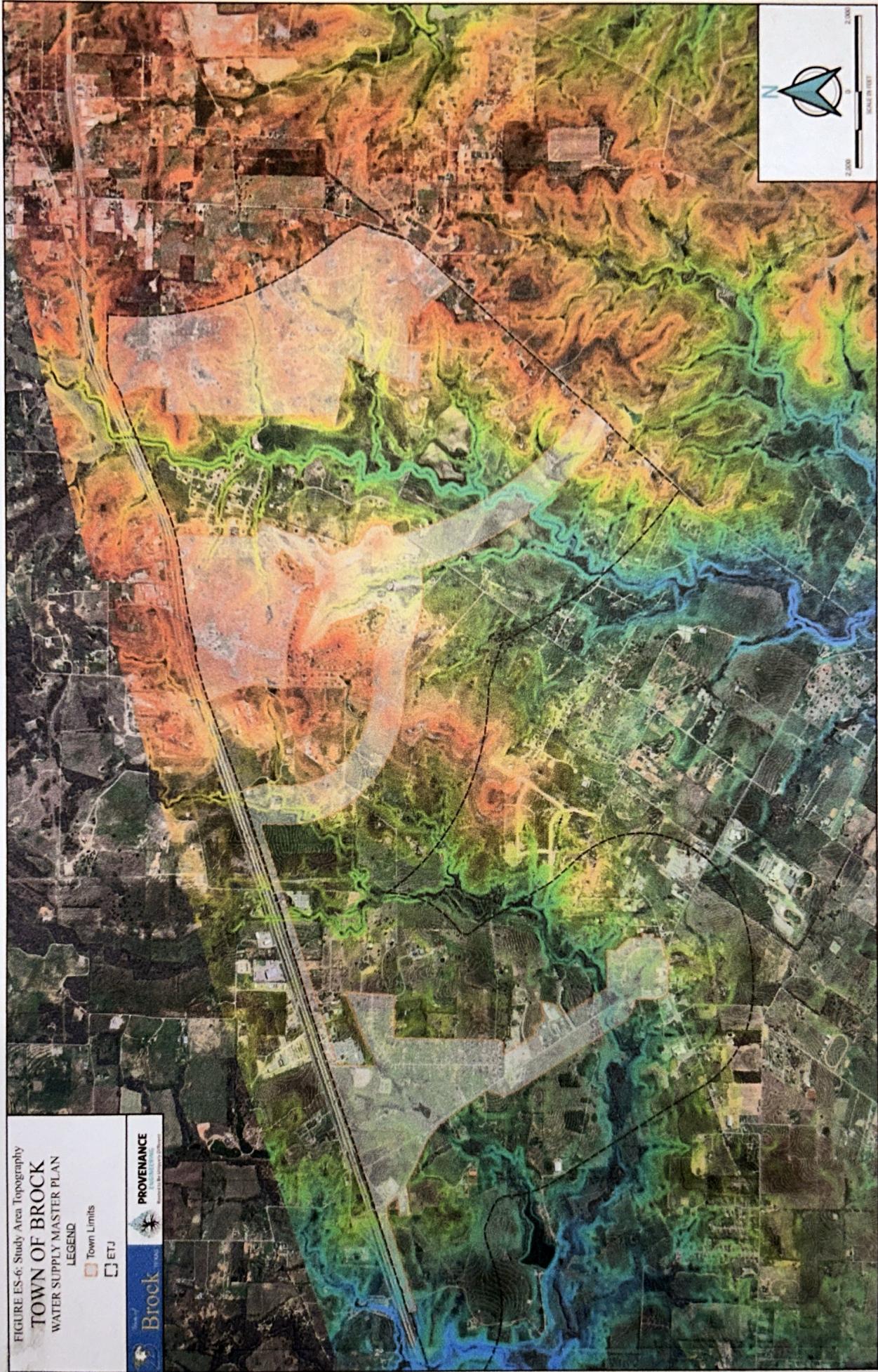
Early phases target revenue-positive corridors to catalyze cash flow; later phases leverage debt once user-fee coverage improves.

Funding and Rate Strategy

Section 7 links the CIP to a rate model that:

- Maintains a $> 1.25 \times$ debt-service ratio coverage while introducing system-development charges.
- Uses a mix of TWDB loans, USDA grants, and local impact fees to close early-phase funding gaps.
- Keeps projected residential rates below regional medians through 2075.

A formal bond-program schedule should be prepared during preliminary design.


Regulatory and Stakeholder Coordination

The Town should secure a Certificate of Convenience and Necessity (CCN), negotiate intertie agreements with potential treated water vendors, and coordinate with TCEQ on compliance with Chapter 290 standards. Outreach meetings with TWDB, Parker County, and adjacent municipalities should begin immediately to explore partnerships and financing opportunities.

Key Benefits

- **Environmental.** Provides a reliable potable supply, reducing aquifer drawdown and vulnerability to drought.
- **Growth Enablement.** Centralized water service supports higher-density residential and commercial development, strengthening the tax base.
- **Scalability and Resilience.** Modular storage and build-out-sized conveyance ensure service stays one planning window ahead of demand.
- **Financial Viability.** Early-phase investment in high-demand corridors generates revenue to cushion later capital outlays.

The water system topographic map provided the primary basis for defining feasible pressure zones, sizing transmission mains, and identifying suitable elevated and ground storage sites. Elevation bands visible on the map established the hydraulic grades necessary to maintain reliable pressures across the service area, allowing Provenance to delineate zone boundaries that minimize pumping while avoiding excessive high-side pressures. High points and ridgelines highlighted priority locations for elevated storage, while low-lying basins indicated where ground storage and pump stations could be most efficiently placed. Together, these topographic controls shaped the recommended pressure-zone layout, guided long-range main extensions, and ensured that system expansion remains hydraulically efficient and resilient through full build-out.

**TOWN OF BROCK
SPECIAL COMMISSION MEETING AGENDA BRIEFING
JANUARY 27, 2026**

AGENDA ITEM 3.3

Title

Town of Brock Water/Wastewater Plan

Item Summary

Discuss and take possible action regarding the proposed Town of Brock Water/Wastewater Plan

Attachments

1. None